вторник, 18 февраля 2014 г.

Тест по теме «Фотоэффект»

1)  Фотоэффект – это явление…

1) почернения фотоэмульсии под действием света;
2) испускания электронов с поверхности вещества под действием света;
3) свечение некоторых веществ в темноте;
4)излучения нагретого твёрдого тела. 

2) При освещении катода вакуумного фотоэлемента потоком монохроматического света происходит выбивание фотоэлектронов. Как изменится максимальная кинетическая энергия фотоэлектронов при увеличении частоты падающего на катод света в 2 раза? 

1) не изменится; 
3) увеличится более чем в 2 раза;
2) увеличится в 2 раза;
4) увеличится менее чем в 2 раза.

3) В опытах Столетова было обнаружено, что кинетическая энергия электронов, вылетевших с поверхности металлической пластины при её освещении светом, …

1) не зависит от частоты падающего света;
2) линейно зависит от частоты падающего света;
3) линейно зависит от интенсивности света;
4) линейно зависит от длины волны падающего света. 

4) Фототок насыщения при уменьшении интенсивности падающего света

1) увеличивается; 
2) не изменяется;
3) уменьшается;
4) увеличивается или уменьшается в зависимости от работы выхода. 

5) Какие из перечисленных ниже явлений можно количественно описать с помощью фотонной теории света? 

А. Фотоэффект. Б. Световое давление.

1) только А;
2) только Б; 
3) А и Б;
4) ни А, ни Б.

6) На рис. приведены графики зависимости максимальной энергии фотоэлектронов от энергии падающих на фотокатод фотонов. В каком случае материал катода фотоэлемента имеет меньшую работу выхода? 














1) 1; 
2) 2; 
3) одинаковую; 
4) ответ неоднозначен.

7 ) Работа выхода электронов для исследуемого металла равна 3 эВ. Чему равна максимальная кинетическая энергия фотоэлектронов, вылетающих с поверхности металлической пластинки под действием света, длина волны которого составляет 2/3 длины волны, соответствующей красной границе фотоэффекта для этого металла? 

1) 2/3 эВ;
2) 1 эВ;
3) 3/2 эВ; 
4) 2 эВ.

8) [21]. В некоторых опытах по изучению фотоэффекта фотоэлектроны тормозятся электрическим полем. Напряжение, при котором поле останавливает и возвращает назад все фотоэлектроны, назвали задерживающим напряжением.

В таблице представлены результаты одного из первых таких опытов при освещении одной и той же пластины, в ходе которого было получено значение h = 5,3 ∙ 10–34 Дж ∙ с.

Задерживающее напряжение Uз, В 0,6

Частота , Гц 5,5  ; 6,1

Чему равно опущенное в таблице первое значение задерживающего потенциала? 

1) 0,4 В; 
2) 0,5 В; 
3) 0,7 В;
4) 0,8 В. 

9) [21]. В опытах по фотоэффекту пластину из металла с работой выхода 3,4 ∙ 10–19 Дж освещали светом с частотой 6 ∙ 1014 Гц. Затем частоту уменьшили в 2 раза, число, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого максимальная кинетическая энергия фотоэлектронов

1) уменьшилась в 2 раза; 
3) увеличилось в 1,5 раза; 
2) стала равной нулю; 
4) уменьшилась менее чем в 2 раза. 

10) Укажите неверное утверждение:
1) максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой падающего света;
2) максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света;
3) фототок насыщения прямо пропорционален интенсивности света, падающего на катод;
4) красная граница фотоэффекта зависит от интенсивности света, падающего на катод.

11) [26]. На рисунке приведён график зависимости кинетической энергии фотоэлектронов Ек от частоты падающего света.

Работа выхода электронов равна


1) 0,44 эВ; 
2) 0,92 эВ; 
3) 2,9 эВ; 
4) 4,4 эВ. 

12) [5]. Металлическую пластинку освещают сначала светом с частотой 1, а затем с частотой 2 < 1. В каком случае (1 или 2) скорость фотоэлектронов имеет большее значение? 

1) в 1 случае; 
2) во 2 случае;
3) скорость фотоэлектронов не изменилась;
4) во 2 случае фотоэффекта не будут.

13) [5]. Металлическую пластинку освещают сначала светом с длиной волны 1 > m, а затем светом с длиной волны 2 < m, где m – красная граница фотоэффекта. В каком случае  (1 или 2) будет наблюдаться фотоэффект? 

1) в 1 случае; 
2) во 2 случае; 
3) в обоих случаях; 
4) в обоих случаях фотоэффекта не буде

вторник, 17 декабря 2013 г.

Рентгеновское излучение

Рентгеновское излучение — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 102 Å (от 10−12 до 10−8 м).

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена или меди.

Рентгеновское излучение – это невидимое излучение, открытое немецким физиком Вильямом Рентгеном в 1895 году. Оно представляет собой электромагнитное излучение с длиной волны порядка стотысячной доли миллиметра, способное проникать в разной степени во все вещества. Рентген не взял патента на своё открытие, подарив его всему человечеству. Это дало возможность конструкторам разных стран мира изобретать разнообразные рентгеновские аппараты самого разнообразного применения.

Рентгеновское излучение, как и видимый свет, вызывает почернение фотоплёнки. Это его свойство имеет большое значение для медицины, промышленности и научных исследований. Рентген сделал для медицины больше, чем любой другой физик в истории науки. Его имя увековечено в физических терминах, связанных с этим излучением: снимок, сделанный рентгеновским аппаратом, называется рентгенограммой, область медицины, в которой используются рентгеновские лучи для диагностики и лечения, называется рентгенологией, а международная единица дозы ионизирующего излучения (любого, не только рентгеновского) называется рентгеном.


Ткани и органы человека и животных, в зависимости от их плотности, создают тени на фотоплёнке или светящемся (люминесцентном) экране. Врач наблюдает это изображение и ставит диагноз. В прошлом рентгенолог, анализируя изображение, полагался только на своё зрение. Сейчас имеются приборы, усиливающие это теневое изображение, выводящие его на телевизионный экран или записывающие в памяти компьютера. Если в кровь пациента ввести вещества, активно поглощающие рентгеновские лучи, то врач у видит на экране места закупорки или расширения сосудов и сможет назначить точное лечение. С помощью рентгенограммы врачи могут судить не только о месте перелома костей, но и об особенностях строения желудка, сердца, лёгких, о расположении язв и опухолей пациента. Рентгеновская съёмка используется также в стоматологии для обнаружения кариеса и воспалений в корнях зубов. Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки.